Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Biol ; 34(8): 1605-1620.e5, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38492568

RESUMEN

Sound elicits rapid movements of muscles in the face, ears, and eyes that protect the body from injury and trigger brain-wide internal state changes. Here, we performed quantitative facial videography from mice resting atop a piezoelectric force plate and observed that broadband sounds elicited rapid and stereotyped facial twitches. Facial motion energy (FME) adjacent to the whisker array was 30 dB more sensitive than the acoustic startle reflex and offered greater inter-trial and inter-animal reliability than sound-evoked pupil dilations or movement of other facial and body regions. FME tracked the low-frequency envelope of broadband sounds, providing a means to study behavioral discrimination of complex auditory stimuli, such as speech phonemes in noise. Approximately 25% of layer 5-6 units in the auditory cortex (ACtx) exhibited firing rate changes during facial movements. However, FME facilitation during ACtx photoinhibition indicated that sound-evoked facial movements were mediated by a midbrain pathway and modulated by descending corticofugal input. FME and auditory brainstem response (ABR) thresholds were closely aligned after noise-induced sensorineural hearing loss, yet FME growth slopes were disproportionately steep at spared frequencies, reflecting a central plasticity that matched commensurate changes in ABR wave 4. Sound-evoked facial movements were also hypersensitive in Ptchd1 knockout mice, highlighting the use of FME for identifying sensory hyper-reactivity phenotypes after adult-onset hyperacusis and inherited deficiencies in autism risk genes. These findings present a sensitive and integrative measure of hearing while also highlighting that even low-intensity broadband sounds can elicit a complex mixture of auditory, motor, and reafferent somatosensory neural activity.


Asunto(s)
Audición , Animales , Ratones , Masculino , Audición/fisiología , Sonido , Estimulación Acústica , Femenino , Corteza Auditiva/fisiología , Ratones Endogámicos C57BL , Movimiento , Potenciales Evocados Auditivos del Tronco Encefálico
2.
Neuropharmacology ; 192: 108599, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33965397

RESUMEN

There has been a dramatic increase in illicit fentanyl use in the United States over the last decade. In 2018, more than 31,000 overdose deaths involved fentanyl or fentanyl analogs, highlighting an urgent need to identify effective treatments for fentanyl use disorder. An emerging literature shows that glucagon-like peptide-1 receptor (GLP-1R) agonists attenuate the reinforcing efficacy of drugs of abuse. However, the effects of GLP-1R agonists on fentanyl-mediated behaviors are unknown. The first goal of this study was to determine if the GLP-1R agonist exendin-4 reduced fentanyl self-administration and the reinstatement of fentanyl-seeking behavior, an animal model of relapse, in rats. We found that systemic exendin-4 attenuated fentanyl taking and seeking at doses that also produced malaise-like effects in rats. To overcome these adverse effects and enhance the clinical potential of GLP-1R agonists, we recently developed a novel dual agonist of GLP-1Rs and neuropeptide Y2 receptors (Y2Rs), GEP44, that does not produce nausea-like behavior in drug-naïve rats or emesis in drug-naïve shrews. The second goal of this study was to determine if GEP44 reduced fentanyl self-administration and reinstatement with fewer adverse effects compared to exendin-4 alone. In contrast to exendin-4, GEP44 attenuated opioid taking and seeking at a dose that did not suppress food intake or produce adverse malaise-like effects in fentanyl-experienced rats. Taken together, these findings indicate a novel role for GLP-1Rs and Y2Rs in fentanyl reinforcement and highlight a potential new therapeutic approach to treating opioid use disorders.


Asunto(s)
Analgésicos Opioides/administración & dosificación , Conducta Adictiva/tratamiento farmacológico , Comportamiento de Búsqueda de Drogas/efectos de los fármacos , Fentanilo/administración & dosificación , Receptor del Péptido 1 Similar al Glucagón/agonistas , Receptores de Neuropéptido Y/agonistas , Animales , Conducta Adictiva/metabolismo , Conducta Adictiva/psicología , Relación Dosis-Respuesta a Droga , Comportamiento de Búsqueda de Drogas/fisiología , Exenatida/farmacología , Exenatida/uso terapéutico , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley , Receptores de Neuropéptido Y/metabolismo , Autoadministración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...